NEP CBCS: 2023-2024 M.Sc.-I Industrial Mathematics with Computer Applications

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune UniversityNAAC accredited 'A' Grade

Two Year M.Sc. Degree Program in Mathematics (Faculty of Science & Technology)

Syllabus for

M.Sc.-I Industrial Mathematics with Computer Applications (IMCA)

Choice Based Credit System Syllabus To be implemented from the academic year 2024-2025

Aims and Objectives of the Course

Sr. No.	Objectives
1.	To provide students with an environment that is conducive to their academic development
	and overall progress
2.	To impart students the mathematical knowledge and necessary skills so that they develop a
	better appreciation and understanding of modern mathematics and current technical
	advancements.
3.	To motivate students to explore various opportunities in the field of academics and industrial
	sector
4.	To develop competence among the students so that they are able to apply mathematics and
	technical knowledge in various spheres of life

Expected Course Specific Learning Outcome

1	A competent student will be able to join Industry for a job.
2	A student will be able to demonstrate mastery of subject material, as exhibited by
	quantitative and qualitative performance in core and elective courses, and as reflected in the
	grade sheet.
3	A student with an interest in the teaching profession will firmly communicate,
	mathematical and technical components with context and interdisciplinary importance in
	written and oral form, as a persistent mathematics student
4	A student with an inclination towards applicable mathematics will be able to explore and
	avail the opportunities in academia as well as industrial sectors.
5	A student will be able to appear for NET/SET/PET/ equivalent exams in mathematical
	sciences, computer science. Further, all opportunities such as teaching/research/government
	jobs/ private sector jobs which are available for M.Sc. Mathematics students will also be
	available for M.Sc. (IMCA) students.
1	

Sr.	Major Mandatory		Continuous Internal Evaluation	End Semester	Total	Credits
No.	Semester-I	Semester-II	(CIE) (Internal Marks)	Exam (Externa l Marks)	Marks	
1.	23SMIMT11MM: Applied Linear Algebra	23SMIMT21MM: Mathematical Analysis	50	50	100	04
2.	23SMIMT12MM: Abstract Algebra	23SMIMT22MM: Calculus for Computer Science	50	50	100	04
3.	23SMIMT13MM: C programming	23SMIMT23MM: C++- Programming	25	25	50	02
4.	23SMIMT14MM: Database Management	23SMIMT24MM: Web Development	25	25	50	02
5.	23SMIMT15MM: Practical based on C Programming and Database Management	23SMIMT25MM: Practical based on C++ and Web Development	25	25	50	02
6	23SMIMT11RM: Research Methodology				100	04
5.		23SMIMT21OJ: OJT/FP			100	04
	Major Electives (Any One)					
6.	23SMIMT11MEA: Mathematical Foundation for Computer Science	23SMIMT21MEA: Coding Theory	50	50	100	04
7.	23SMIMT11MEB: Theoretical Computer Science	23SMIMT21MEB: Numerical Analysis	50	50	100	04
8.	23SMIMT11MEC: course from Swayam /NPTEL / E- Pathashala etc.	23SMIMT21MEC: course from Swayam /NPTEL / E- Pathashala etc.			100	04

Sr.	Major Mandatory		Continuous Internal Evaluation	End Semester Exam	Total	Credits
No.	Semester-III	Semester-IV	(CIE) (Internal Marks)	Exam (External Marks)	Marks	
1.	23SMIMT31MM: Programming with Java	23SMIMT41MM: Applied Geometry for Computer Graphics	50	50	100	04
2.	23SMIMT32MM: Complex Analysis		50	50	100	04
		23SMIMT42MM: Android (Practical)	25	25	50	02
		23SMIMT43MM: Data Structure (Practical)	25	25	50	02
3.	23SMIMT33TMM: Programming with Python (Theory)	23SMIMT44TMM: Introduction to Data Science (Theory)	25	25	50	02
4.	23SMIMT33PM M: Programming with Python (Practical)	23SMIMT44PMM: Introduction to Data Science (Practical)	25	25	50	02
5.	23SMIMT34MM: Fourier Series and Boundary Value	-	25	25	50	02

Structure of M.Sc-II Industrial Mathematics with Computer Applications Course

	Problems					
6.	23SMIMT31RP: Research Project	-			100	04
	-	23SMIMT41RP: Research Project			150	06
	•	Major Electives	s (Any One)			
7.	23SMIMT31MEA: Probability and Stochastic Process	23SMIMT41MEA: Optimization Techniques	50	50	100	04
8.	23SMIMT31MEB: Artificial Intelligence	23SMIMT41MEB: Statistical Inference	50	50	100	04
9.	23SMIMT31MEC: course from Swayam /NPTEL / E- Pathashala etc.	23SMIMT41MEC: course from Swayam /NPTEL / E- Pathashala etc.			100	04

Syllabus:

Course/ Paper Title	Applied Linear Algebra
Course Code	23SMIMT11MM
Semester	Ι
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Vector Spaces:	10
	Vector spaces, subspaces, linear independence, basis and	
	dimension, linear transformations, quotient Spaces, direct sum, the	
	matrix of linear transformation.	
Unit II	Canonical Forms	10
	Eigenvalues and eigenvectors, minimal polynomial, Cayley-	
	Hamilton theorem, diagonalizability, Jordan form (without	
	proof).	
I nit III	Orthogonality	10
	Orthogonanty	10
	Orthogonal vectors and subspaces, cosines and projection onto	
	lines, projections and least square methods, orthogonal basses	
	and Gram-Schmidt process.	
Unit IV	Positive Definite Matrices	10
	Minima, maxima and saddle point, tests for positive	
	definiteness, singular value decomposition, principal	
	component analysis, quadratic forms.	
Unit V	Applications	10
	Image processing, computer graphics, pattern recognition,	
	Google page rank algorithm.	
Unit VI	Numerical Computations	10
	Numerical computations of determinants, solutions of	
	linear systems, eigenvalues, eigenvectors, diagonalizability	
	using mathematical softwares like Scilab/Matlab.	

- 1. Linear Algebra by Vivek Sahai, Vikas Bist
- 2. Linear Algebra and its applications, 5th Edition by Gilbert Strang.
- 3. Linear Algebra, 5th Edition by Stephen Friedberg, Arnold Insel, Lawrence Spence
- 4. Linear Algebra and Its Applications, 5th Edition by David Lay, Steven Lay, Judi McDonald
- 5. Linear Algebra Done Right, 3rd Edition by Sheldon Axler

Course/ Paper Title	Abstract Algebra
Course Code	23SMIMT12MM
Semester	Ι
No. of Credits	04

Unit No.	a Title with Contents	
Unit No	The with Contents	Lectures
Unit I	Introduction to Groups	06
	Symmetries of a Square, The Dihedral Groups, Definition and Examples	
	of Groups, Elementary Properties of Groups.	
Unit II	Subgroups and Cyclic Groups	10
	Terminology and Notation, Subgroup Tests, Examples of Subgroups,	
	Properties of Cyclic Groups, Classification of Subgroups of Cyclic	
	Groups, Properties of Cosets, Lagrange's Theorem and Consequences.	
Unit III	Permutation Groups:	10
	Definition and Notation, Cycle Notation, Properties of	
	Permutations, An application of Cosets to Permutation Groups, The	
	Rotation Group of a Cube and a Soccer Ball.	
Unit IV	Group Homomorphism and Isomorphism	10
	Definition and Examples of Homomorphism, Properties of	
	Homomorphism. Definition and Examples of Isomorphism,	
	Properties of Isomorphism, Cayley's Theorem, The First	
	Isomorphism Theorem, Automorphism	
Unit V	External Direct Products	10
	Definition and Examples, Properties of External Direct Products,	
	The Group of Units Modulo n as an External Direct Product,	
	Applications.	
Unit VI	Normal Subgroups and Factor Groups	08
	Normal Subgroups, Factor Groups, Applications of Factor Groups,	

	Internal Direct Products.	
Unit VII	Fundamental Theorem of Finite Abelian Groups	06
	The Fundamental Theorem, The Isomorphism Classes of Abelian	
	Groups.	

- 1. Joseph A. Gallian, Contemporary Abstract Algebra (Fourth Ed.), Narosa, 1999.
- 2. D. S. Dummit and R. M. Foote, Abstract Algebra (Third Edition), Wiley, 2011.
- P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra (Second Ed.), Cambridge Univ. Press (Indian Ed. 1995).
- 4. I. S. Luthar and I. B. S. Passi, Algebra-Vol. 1: Groups, Narosa, New Delhi, 19964.

Course/ Paper Title	C Programming
Course Code	23SMIMT13MM
Semester	Ι
No. of Credits	02

Unit No.	Title with Contents	
Unit I	Introduction to Programming	1
	Program and Programming, Programming Languages, Types of	
	Software, Operating Systems, Basic Linux Commands and vi Editor,	
	Compiler, Interpreter, Loader and Linker, Introduction to algorithms,	
	flow charts, Background of internal working of compilers	
Unit II	Basics of C	2
	History and Features of C, Importance of C, Backslash Characters,	
	Character set, Constants, Format Specifiers, Identifiers, Keywords,	
	Variables, Data Types, Comments, const Qualifier, The Structure of a C	
	Program, Building an Executable Version of a C Program, Debugging a	
	C Program, Programming Examples	
Unit III	Applications of C Programming	1
	Demonstration of an application developed using C	
	Note: This unit will not be considered for an assessment of students	

Unit IV	Control Statements	2
	Decision Making Statements: if, if-else, switch Loop Control	
	Structures: while, do. while, for Keywords- break and continue, exit () Function, return Statement,	
	Programming Examples Approximation to solutions, and uniqueness	
	of solutions.	
Unit V	Input and Output	2
	Unformatted I/O Character I/O String I/O Formatted I/O	
	Programming Examples	
I Init VI	Functions	3
	Concept Usage of a Eulection Advantages Eulection Prototype	0
	Eunction example Types of Eunction Call by Value and Call by	
	Address Decursion Library Experience Local variable Clabel	
	Address, Recursion, Library Functions, Local Variable, Global	
	Variable, Storage classes (automatic, static, register, external),	
	Programming Examples.	
Unit VII	Array	3
	Array Declaration, Initialization, Types of Arrays (1-D, 2-D	
	and Multidimensional), Passing Arrays to Functions, Programming	
	Examples.	
Unit	Pointers	3
VIII		
	Pointer Declaration and Initialization, Dereferencing Pointers, void	
	Pointer, Pointer Arithmetic, Pointer to Pointer, Arrays and Pointers,	
	Functions and Pointers, Passing Pointers to Function, Function	
	Returning Pointer, Pointer to Function, Dynamic Memory Allocation,	
	Programming Examples.	
Unit IX	String Handling	4
	Declaration and Initialization, Reading and Writing Strings, Standard	
	String Library, Functions, Array of Pointers to String, Command Line	
	Arguments, Programming Examples.	
Unit X	Structures and Unions	4
	Overview of Structures, Defining and Using a Structure. typedef	
	Keyword, Nested Structures, Passing Structure to Function.	
	Structure and Pointer, Union, Difference between Structure and	

	Union, Programming Examples.	
Unit XI	Pre-Processor Directives	4
	Pre-Processor Directives, #define Macro, Conditional Compilation,	
	Pre- defined Macros, #include and Header Files, Programming	
	Examples.	
Unit XII	File Handling	5
	What is a Stream? Opening and Closing of Files, File Opening	
	Modes, Writing and Reading in Text Format, Writing and Reading	
	in Binary Format, Programming Examples.	

- 1. Kernighan Brian W., Ritchie Dennis M., The C Programming Language, PHILearning Pvt. Ltd., 2nd Edition, 2010
- Schildt Herbert, C: The Complete Reference, Tata McGraw Hill, 4th Edition, 2006
- 3. Kanetkar Yashavant, Pointers in C, BPB Publications, 4th Edition, 2013
- 4. Kanetkar Yashavant, Test your C Skills, BPB Publications, Rev. Edition, 2008

Course/ Paper Title	Database Management Systems
Course Code	23SMIMT14MM
Semester	Ι
No. of Credits	02

Unit No.	Title with Contents	No. of Lectures
Unit I	Introduction to data and databases	
	Data – Introduction / Concept, introduction to data structures,	
	Introduction to databases, Significance of Database, System	
	Applications, Data Independence, Entities and their Attributes,	
	Relationship and Relationship Types,	
	E-R Diagram, Data types, Creating tables (without keys)	
Unit II	Overview of RDBMS (PostgreSQL)	4

	Relational Database Management System, RDBMS Properties,	
	Maintaining Integrity and Defining Data Integrity, Integrity Rules and	
	Integrity Constraints, Relational Integrity Rules, Creating tables (with	
	keys)	
Unit III	SQL	4
	Types of SQL, DDL, DML, Basic queries in SQL Single table,	
	Deletion-Insertion and Update in SQL, Simple queries (with insert,	
	delete, and update), Multi table Retrievals, Nested queries (with foreign	
	key and using multi tables), Aggregate-Functions, Joins, GROUPBY -	
	HAVING clause, Nested Sub queries	
Unit IV	Views and Stored Functions	4
	View definition, how to write view and its execution, Function	
	definition, how to write function and its execution, Solving some	
	problems with function	
Unit V	Cursors	4
	Cursor definition, how to write cursor and its execution, Solving some	
	problems with cursor, Introduction to triggers and some demo examples	
Unit VI	NoSQL	5
	Introduction, Why NoSQL? RDBMS Vs NoSQL, Features of NoSQL,	
	Types:	
	Key-value Pair Based, Column-oriented, Graphs based, Document-	
	oriented, ACID and BASE for reliable database transactions, CAP	
	theorem	
Unit VII	Introduction to MongoDB	5
	Basics, Installation and Set Up, CRUD operations	
	Working with online database (Demonstration)	

- 1. Henry F. Korth, Abraham Silberschatz, S. Sudarshan Database System Concepts, ISBN:9780071289597, Tata McGraw-Hill Education
- 2. Korry Douglas, PostgreSQL, ISBN:9780672327568
- 3. John Worsley, Joshua Drake Practical PostgreSQL (B/CD), ISBN: 9788173663925Shroff / O'reilly

- 4. Joshua D. Drake, John C Worsley Practical Postgresql, O'Reilly
- 5. Richard Stones, Neil Matthew Beginning Databases with PostgreSQL, From Noviceto Professional, 2nd Edition

Websites:

- 1. <u>https://www.postgresql.org/docs/current/</u>
- 2. <u>https://www.mongodb.com/docs/atlas/</u>

Course/ Paper Title	Research Methodology
Course Code	23SMIMT11RM
Semester	Ι
No. of Credits	4

Syllabus

Unit No		No. of
Unit No	Title with Contents	Lectures
Unit I	Scientific Research and Literature Survey	10
	Finding and solving research problems, Role of a	
	supervisor, Survey of a research topic. Publishing a paper.	
	Reviewing a paper., Funding agencies, Research grant	
	proposal writing, Copyright issues, Ethics and plagiarism.	
	MathSciNet, ZMATH, Scopus, ISI Web of Science,	
	Impact factor, h-index. Google Scholar, ORCID, JStor,	
	Online and open access journals.	
Unit II	Introduction to LaTeX	02
	Definition and application of LaTeX, Preparationand	
	Compilation of LaTeX input file.	
	LaTeX Syntax and Keyboard Characters in LaTeX	
Unit III	Formatting Words, Lines, and	04
	Paragraphs	
	Text and Math Mode Fonts, Emphasized and	
	Colored Fonts. Labeling and Referring Numbered	
	Items, Texts Alignment and Quoted text. New	

	Lines and Paragraphs.	
Unit IV	Listing and Table Preparation	06
	Listing Texts, Table Through the tabular Environment and	
	tabularx Enviroment, Vertical Positioning of Tables,	
	Sideways (Rotated)Texts in Tables, Merging Rows and	
	Columns of Tables.	
Unit V	Equation Writing	03
	Basic Mathematical Notations and Delimiters.	
	Mathematical Operators, Mathematical Expression, in	
	Text- mode, Simple Equations and Array of Equations.	
Unit VI	Figure Insertion and Figure	03
	Drawing	
	Commands and Environment for Inserting Figures,	
	tikz package for drawing figures.	
Unit VII	Presentation Using Beamer	04
	Frames and Sectional Units in	
	Presentation, Presentation	
	Structure., Appearance of a	
	Presentation(Beamer Themes).	
Unit VIII	Getting Started with SageMath	03
	Introduction and Installation of SageMath, Exploring	
	integers, solving equations in SageMath. 2D and 3D	
	plotting in SageMath.	
Unit IX	Calculus with SageMath	08
	Calculus of one variable with SageMath, Applications of	
	derivatives, Applications of Integrals. Partial Derivatives	
	and gradients, jacobians. Local maximum-minimum,	
	Application of local maximum and minimum	
Unit X	Linear Algebra with SageMath	07

	RREF and Solving system of linear	
	reach and borving system of mean	
	Equations, Vector spaces in SageMath, Linear	
	Transformations with SageMath, Eigenvalues and	
	Eigenvectors with SageMath,	
	Inner Product Spaces in SageMath, Gram-Schmidt	
	Process.	
Unit XI	Numerical Analysis with SageMath	10
	QR- Factorization, Singular Value Decomposition (SVD),	
	Numerical Solution of algebraic equations, Numerical	
	r tamerieur Soradion of argeorade equations, i tamerieur	
	Solutions of system linear equations, Interpolations,	
	Solutions of system linear equations, Interpolations, Numerical Integration.	
	Solutions of system linear equations, Interpolations, Numerical Integration.	
	Solutions of system linear equations, Interpolations, Numerical Integration.	

Reference: LaTeX

1. Dilip Datta, LaTeX in 24 Hours, A Practical Guide for Scientific Writing, SpringerUnit

2. Zofia Walczak, Graphics in LATEX using TikZ.

Reference Books: SageMath

1. Mathematical Computation with Sage by Paul Zimmermann available from on

http://www.sagemath.org.

2. An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods by Razvan A Mezei, Springer.

3. Sage for Undergraduates, Gregory V. Bard.

Course/ Paper Title	Mathematical Foundation for Computer Science
Course Code	23SMIMT11MEA
Semester	I
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
A] Graph Theory		
Unit I	Topics in Graph Theory	15
	Graphs; Graphs as Models; Matrices and Isomorphism; Decomposition and Special Graphs; Degree of a vertex; Counting and Bijections. Paths, Cycles, Trails: Connection in Graphs; BipartiteGraphs; Eulerian Circuits; Hamiltonian Cycles. Directed Graphs: Definition and Examples; Vertex Degrees; Eulerian Digraphs.	
Unit II	Trees	12
	Trees: Properties of Trees; Distance in Trees and Graphs. Enumeration of Trees: Spanning Trees in Graphs; Minimum Spanning Trees; Shortest Paths; Connectivity;Edge Connectivity. Trees in Computer Science.	
Unit III	Matchings	3
	Maximum Matchings; Hall's Matching Condition.	
	B] Combinatorics	
Unit IV	Basic Counting Principles	10
	Two Basic Counting Principles, Simple Arrangements and Selections, Arrangements and Selections with Repetitions, Distributions, Binomial Identities.	
Unit V	Generating Functions	10
	Generating Functions Models, Calculating Coefficients of Generating Functions, Partitions, Exponential Generating Functions.	
Unit VI	Recurrence Relations	10
	Recurrence Relations Models, Solutions of Linear Recurrence Relations, Counting with Venn Diagrams, Inclusion-Exclusion Formula.	

1. Douglas B. West: Introduction to Graph Theory; 2nd Edⁿ; PHI Learning Pvt. Ltd.

2. Alan Tucker: Applied Combinatorics 6th Edⁿ; Wiley India.Unit

3. B. Kolman, R. Busby, S.C. Ross: Discrete Mathematical Structures, 6th Edⁿ, Pearson Edⁿ.

4. John Clark, D. A. Holton: A First Look at Graph Theory, World Scientific, 1991.

Website:

1.<u>https://www.youtube.com/watch?v=E40r8DWgG40&list=PLEAYkSg4uSQ2fXcfrTGZdPuTmv98bnFY5</u> 2. https://nptel.ac.in/courses/111/106/111106155/

Course/ Paper Title	Theoretical Computer Science
Course Code	23SMIMT11MEB
Semester	Ι
No. of Credits	04

Unit No	Title with Contents	No. of
Unit NO	The with Contents	Lectures
Unit I	Overview of theory of mathematics:	05
	Sets, Functions, Logical statements, Proofs, relations, languages,	
	Mathematical induction, strong principle, Recursive definitions	
Unit II	Introduction to Theory of Computations:	05
	Fundamental concepts, history, Applications, Phases of Compiler,	
	basic terminologies used in theory of computation: automata, symbol,	
	alphabet, String	
Unit III	Introduction to Regular Languages and Finite Automata:	05
	Regular expressions, regular	
	languages, applications, Automata with Output-Moore	
	machine, Mealy machine, Finite automata, memory	
	requirement in a recognizer, definition, union, intersection and	
	complement of regular language, Non Determinism Finite	
	Automata, Conversion from NFA to FA, Non Determinism	
	Finite Automata Conversion of NFA to NFA and equivalence	

	of three Kleene's Theorem, Minimization of Finite	
	automata Regular and Non-Regular Languages - pumping lemma.	
Unit IV	Grammar:	05
	Introduction to Grammar, Definition, elements of grammar,	
	Application areas and comparison of different grammars, Comparison	
Unit V	Context Free Grammar	10
	Importance of Context free grammar, Unions Concatenations and	
	Kleen's of Context free language Regular grammar, Derivations and	
	Languages, Relationship between derivation and derivation trees,	
	Ambiguity Unambiguous CFG and Algebraic Expressions Bacos	
	Naur Form (BNF), Normal Form – CNF.	
Unit VI	Pushdown Automata, CFL and NCFL:	10
	Pushdown Automata, CFL And NCFL: Definition, deterministic PDA,	
	Equivalence of CFG and PDA, Pumping lemma for CFL, Intersections	
	and Complements of CFL, Non-CFL	
Unit VII	Turing Machine (TM):	10
	TM Definition, Model of Computation and Church Turning Thesis,	
	computing functions with TM, Combining TM, Variations of TM, Non-	
	Deterministic TM, Universal TM, Recursively and Enumerable	
	Languages, Context sensitive languages and Chomsky hierarchy	
Unit VIII	Computable Functions	10
	Partial, total, constant functions, Primitive Recursive Functions, Bounded Mineralization, Regular function, Recursive	
	Functions	

- 1. John Hopcroft, Rajeev Motwani and Jeffrey Ullman, "Introduction to Automata theory, Languages and computation", 3rd edition Pearson Education, 2009.
- 2. Shirish S. Sane, "Theory of Computer Science", 2nd edition, 2007, Technical publication
- 3. Daniel I. A. Cohen, John Wiley & Sons, "Introduction to Computer Theory", 2nd edition, 2009

4. John E. Hopcroft and Jeffrey Ullman, "Introduction to Automata theory, Languages and computation" Narosa Publishing House, 1979.

Course/ Paper Title	Mathematical Analysis
Course Code	23SMIMT21MM
Semester	П
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Basic Topology	10
	Real Numbers and its properties, Finite, Countable & Uncountable	
	sets, Metric Spaces. Compact Sets. Perfect Sets. Connected Sets.	
Unit II	Numerical Sequences and Series	10
	Convergent sequences, sub sequences, Cauchy sequences, Special	
	sequences, Series, Series of non-negative terms, The number e, Root	
	and Ratio tests, Power serie, Absolute Convergence	
Unit III	Continuity	10
	Limits of functions, Continuous functions, Continuity and	
	Connectedness, Continuity and Compactness, Monotonic functions,	
	Types of discontinuities	
Unit V	Differentiation	10
	Derivatives and Mean Value Theorems, Taylors theorem, Convex	
	functions, Cauchy form of Remainder. Differentiation of Vector	
	Valued functions.	
Unit-VI	Riemann Integral	10
	Concept of Partitions, Refinements, Upper and lower sums, Existence of Integral, Properties of Riemann Integral (without proof), Integral and Differentiation, Fundamental Theorem of Integral Calculus.	

- 1. Real Mathematical Analysis, by C. C. Pugh, Springer, New Delhi, 2004.
- 2. Functions of Several Real Variables, by Martin Moskowitz and Fotios Paliogiannis.
- 3. Methods of Real Analysis, by R. R. Goldberg, Oxford & IBH Publishing Company, 2019.
- **4.** Advanced Calculus, by Gerald B. Folland, Pearson, 2012.
- 5. N. L. Carothers, Real analysis, Cambridge University Press India, 1999.
- 6. Foundations of Analysis, by Joseph L. Taylor, AMS, 2012.

Course/ Paper Title	Calculus for Computer Science
Course Code	23SMIMT22MM
Semester	II
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Differential Calculus of Scalar and Vector Fields:	20
	Functions from R ⁿ to R ^m . Scalar and vector fields; Open balls and open	
	sets; Limits and continuity.	
	The derivative of a scalar field with respect to a vector; Directional	
	derivatives and partial derivatives; Partial derivatives of higher order;	
	Inverse function theorem and Implicit Function theorem. (Statement	
	only without proof)	
	Directional derivatives and continuity; The total derivatives; The	
	gradient of a scalar field; A sufficient condition for differentiability.	
	A chain rule for derivatives of scalar fields; Applications to geometry.	
	Level sets. Tangent planes; Derivatives of vector fields;	
	Differentiability implies continuity; The chain rule for derivatives of	
	vector fields; Matrix form of the chain rule	
Unit II	Line Integrals:	
	Paths and line integrals; Other notations for line integrals; Basic	
	properties of line integrals.	
	The concept of work as a line integral; Line integrals with respect to	
	arc length; Further applications of line integrals.	

	Open connected sets. Independence of the path; The first and second	
	fundamental theorem of calculus for line integrals; Necessary and	
	sufficient conditions for a vector field to be a gradient; Necessary	
	conditions for a vector field to be a gradient.	
Unit III	Multiple Integrals:	15
	Partitions of rectangles. Step functions: The double integral of a step	
	function: The definition of the double integral of a function defined	
	and bounded on a rectangle. Upper and lower double integrals:	
	Evaluation of double integral by repeated one dimensional integration:	
	Comparing interpretation of the double integral of a volume: Worked	
	examples	
	Integrability of continuous functions: Integrability of bounded functions	
	with discontinuities. Double integrals extended over more general regions:	
	Applications to area and volume: Worked examples	
	Green's theorem in the plane: Some applications of Green's	
	theorem: A necessary and sufficient condition for a two	
	dimensional vector field to be a gradient	
	Change of variables in a double integral: Special cases of the	
	transformation formula withproof: General case of the	
	transformation formula with proof. Extensions to higher	
	dimensions: Change of variables in an n fold integral: Worked	
	average of variables in an in-fold integral, worked	
IIn:+ IN/	examples.	15
	Surface Integrals:	15
	Parametric representation of a surface; The fundamental vector	
	product; The fundamentalvector product as a normal to the surface;	
	Area of a parametric surface.	
	Surface integrals; Change of parametric representation; Other notations	
	for surface integrals.	
	The theorem of Stokes; Curl and divergence of a vector field; Properties	
	of curl and divergence; the divergence theorem (Gauss' theorem) and	
	applications of the divergence theorem.	

1.Tom M. Apostol, Calculus Volume II (Second Edition) Indian Reprint 2016 (John Wiley & Sons, Inc) ISBN: 978-81-265-1520-2.

2. For "Inverse Function Theorem" and "Implicit Function Theorem", use

Tom M. Apostol, Mathematical Analysis 2nd Edition Narosa Publication 20th Reprint 2002. ISBN 978-81-85015-66-8.

- 3. Gerald B. Folland, Advanced Calculus, Pearson Edⁿ 2012.
- 4. A Devinatz, Advanced Calculus, Holt, Rnehart and Winston Inc., New York, 1968.

Website

1. Multivariable Calculus Intructor: Dr. S.K.Gupta IIT Roorkee

https://www.youtube.com/results?search_query=multi+variable+calculus+nptel

Course/ Paper Title	C++- Programming
Course Code	23SMIMT23MM
Semester	п
No. of Credits	02

Unit No	Title with Contents	
Unit I	Introduction to C++	2
	History, Features of C++, Structure of C++ program, Variables, Data	
	Types, Keywords, Operators, Namespaces, using Keyword, I/O	
	Stream, References in C++, C vs C++, Programming Examples	
Unit II	Control Statements	2
	Decision Making Statements: if, if-else, switch Loop Control	
	Structures: while, do. While, for Keywords- break and continue,	
	Comments, Programming Examples	
Unit III	Functions	2

	Concept, Usage of a Function, Types of Function, Call by Value,	
	Call by Reference and Call by Address, References vs Pointers,	
	Return by Reference, Inline Function, Default Arguments Concept,	
	Recursion, Programming Examples	
Unit IV	Arrays	3
	Arrays, Passing Array to Function, Multidimensional Arrays,	
	Programming Examples	
Unit V	Strings	3
	Concept, Operations on Strings, Standard Library String Functions,	
	Programming Examples	
Unit VI	Class and Objects	6
	OOPs concepts: Encapsulation, Inheritance, Polymorphism,	
	Abstraction Object, Class, Constructor, Types of Constructor (Default,	
	Parameterised, Copy), Destructor, Virtual Destructor, this Pointer,	
	static Members (Fields & Member Functions), Structs, Friend	
	Function, Programming Examples	
Unit-VII	Inheritance & Aggregation	6
	Concept, Advantages, Types of Inheritance, Aggregation,	
	Programming Examples	
Unit	Polymorphism	6
VIII		
	Concept, Function overloading, Operator overloading, Function	
	overriding, Virtual function, Virtual base class, Programming	
	Examples	
Unit IX	Abstract Class	6
	Concept, Pure Virtual Function, Interface, Programming Examples	
Unit X	Ella & Stungura	8
		o
	Concept, I/O Manipulators (endl, flush, setfill, setprecision, setw),	
X T •4 X 7 X	fstream, ifstream, ofstream, File I/O, Programming Examples	6

	Concept, Exception Handling Keywords (try, catch, throw),	
	Advantages, Standard Exception Classes in C++, User-defined	
	Exceptions, Programming Examples	
Unit XII	Templates	8
	Concept, Function Template, Overloading of Function Template,	
	Restrictions on Generic Functions, Class Template, Programming	
	Examples	
Unit	Introduction to STL (Standard Template Library)	8
XIII		
	Concept, Containers (Stack, Queue, Vector, List), Algorithms (Sorting,	
	Searching), Iterator, Programming Examples	

- 1. Herbert Schildt, The Complete Reference C++, Tata McGraw Hill, 4th Edition, 2003
- 2. Herbert Schildt, C++ Programming Cookbook, Tata McGraw Hill, 2008
- 3. Bjarne Stroustrup, The C++ Programming Language, Pearson, 4th Edition4.
- 4. Lafore Robert, Object-Oriented Programming with C++, Pearson, 4th Edition, 2010
- 5. Kanetkar Yashavant, Let us C++, BPB Publications, 2nd Edition, 2010

Course/ Paper Title	Web Development
Course Code	23SMIMT24MM
Semester	II
No. of Credits	02

Unit No	Title with Contents	No. of Lectures
Unit I	Foundation	02
	The Node.js framework, Installing Node.js, Using Node.js to execute scripts	
Unit II	HTTP and HTTPs	04
	Making a simple server, when to use HTTP and HTTPs, Server ports and listening, HTTP requests and responses, Request and response	

	headers and body, Creating a response to incoming requests, Building	
	a simple HTTP server with static files	
Unit III	File System & Modules	04
	Synchronous vs. asynchronous I/O. Path and directory operations	
	dirname and –filename. Asynchronous file reads and writes.	
	Defining modules with exports. Modules are singletons. Creating a	
	package. Module scope and construction	
Unit IV	Buffers, Streams, and Events	05
	Using buffers for binary data, flowing vs. non-flowing streams,	
	Streaming I/O from files and other sources, processing streams	
	asynchronously, Configuring event handlers.	
Unit V	Express	05
	The model-view-controller pattern, Building a front-end controller,	
	Defining routes, Creating actions, Using REST, Reading POST data,	
	Building Handlebars helpers, Adding middleware	
Unit VI	Data Sources	05
	How Node.js connects to databases, RDBMS databases and NoSQL	
	databases, Connecting to RDBMS and NoSQL databases, Performing	
	CRUD operations, Building client requests to web services.	
Unit-VII	Angular Components	05
	Component Life Cycle, Services, Single Page Applications,	
	Directives, Forms, Pipes, Communication Between Component	

- 1. Aristeidis Bampakos, Pablo Deeleman, Learning Angular: A no-nonsense beginner's guide to building web applications with Angular 10 and TypeScript, 3rd Edition
- 2. Jeremy Wilken, Angular in Action
- 3. Frank Zammetti, Modern Full-Stack Development: Using TypeScript, React, Node.js, Webpack, Python, Django, and Docker.

Websites

- 1. https://docs.angularjs.org/
- 2. https://nodejs.org/en/docs/

Course/ Paper Title	Coding Theory
Course Code	23SMIMT21MEA
Semester	Π
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Error detection, correction and decoding	12
	Introduction, Communication channels, Maximum likelihood decoding, Hamming distance, Nearest neighbour / minimum distance decoding, Distance of a code.	
Unit II	Finite fields	12
	Fields, Polynomial rings, Structure of finite fields, Minimal polynomials	
Unit III	Linear Codes	16
	Vector spaces over finite fields., Linear codes, Hamming weight, Bases for linear codes, Generator matrix and parity–check matrix, Equivalence of linear codes, Encoding with a linear code, Decoding of linear codes: Cosets; Nearest neighbour decoding for linear codes; Syndrome decoding.	
Unit IV	Bounds in coding theory	08
	The main coding theory problem, Lower bounds: Sphere–covering bound;Gilbert–Varshamov bound, Hamming bound and perfect codes: Binary, Hammingcodes; Golay codes, Singleton bound and MDS codes.	
Unit V	Cyclic codes	08

	Definitions, Generator polynomials, Generator and parity–check matrices, Decoding of cyclic codes.	
Unit VI	Some special cyclic codes	04
	BCH codes: Definitions; Parameters of BCH codes.	

- San Ling, Chaoping Xing, Coding Theory, A First Course; Cambridge University Press, 2004.
- 2. Raymod Hill, A First Course in Coding Theory, Oxford University Press.
- 3. Rudolf Lidl, Günther Pilz, Applied Abstract Algebra, Second Edition, Springer, Reprint 2004.

Website:

- 1. <u>https://nptel.ac.in/courses/117/106/117106031/</u>
- 2. https://nptel.ac.in/courses/108/104/108104092/

Course/ Paper Title	Numerical Analysis
Course Code	23SMIMT21MEB
Semester	п
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Root Finding Methods:	08
	Convergence; Floating Point Number Systems; Floating Point Arithmetic. Fixed Point Interaction Schemes; Newton's Method; Secant Method; Accelerating Convergence	
Unit II	System of Equations:	14

	Gaussian Elimination; Pivoting Strategies.	
	Error Estimates and Condition Number; LU decomposition; Direct Factorization.	
	Iterative Techniques for Linear Systems: Basic Concepts and Methods.	
	Nonlinear Systems of Equations.	
Unit III	Eigenvalues and Eigenvectors:	05
	The Power Method, The Inverse Power Method, Reduction to	
	Symmetric Tridiagonal Form, Eigenvalues of Symmetric Tridiagonal	
	Matrices.	
Unit IV	Interpolation (and Curve Fitting):	09
	Lagrange Form of Interpolating Polynomial, Neville's Algorithm, The	2
	Newton Form of Interpolating Polynomial, Optimal Points for	
	Interpolation, Piecewise Linear Interpolation, Cubic Spline	
	Interpolation.	
Unit V	Differentiation and Integration:	12
	Numerical Differentiation, Numerical Integration – The Basics and	
	Newton-Cotes Quadrature; Composite Newton- Cotes Quadrature.	
Unit VI	Initial Value Problems of Ordinary Differential Equations:	12
	Euler's Method; Higher-Order One-Step Methods: Taylor Methods,	
	Runge-Kutta Methods, Multistep Methods (Adams-Bashforth Methods,	
	The Two Step Adams-Bashforth Method, Milnes's Method,	
	Convergence and Stability Analysis.	

1. Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson Prentice Hall 2007, ISBN 978-81-317-0942-9.

2. John H. Mathews, Kurtis D. Fink, Numerical Methods Using Matlab, 4th Edition,

Pearson Education (Singapore) Pte. Ltd., Indian Branch, Delhi 2005.

(SciLab commands similar to MatLab commands can be used for problems)

3. K.E. Atkinson, An Introduction to Numerical Analysis, Second Edition, John Wiley & Sons.

- 4. J. L. Buchaman, P. R. Turner, Numerical Methods and Analysis, McGraw Hill, 1992.
- 5. M.K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical Methods for Scientific &

Engineering Computation, 5th Edition, New Age International Publication

6. Numerical Method Kit: For matlab, Scilab and Octave Users by Rohan Verma University of Delhi Independently published in 2020.

- 7. G Shanker Rao, Numerical Analysis, New Age International, 2006.
- 8. S.S.Sastry, Sastry Introductory Methods of Numerical Analysis Fifth Edition, PHI Learning Private Limited.

2. Website:

Numerical Analysis Instructor: Prof Usha Department Of Mathematics IIT Madras https://www.youtube.com/results?search_query=numerical+analysis+nptel